Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(7999): 555-564, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356065

RESUMO

The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern1-3. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system1. Long existing feedbacks between the forest and environmental conditions are being replaced by novel feedbacks that modify ecosystem resilience, increasing the risk of critical transition. Here we analyse existing evidence for five major drivers of water stress on Amazonian forests, as well as potential critical thresholds of those drivers that, if crossed, could trigger local, regional or even biome-wide forest collapse. By combining spatial information on various disturbances, we estimate that by 2050, 10% to 47% of Amazonian forests will be exposed to compounding disturbances that may trigger unexpected ecosystem transitions and potentially exacerbate regional climate change. Using examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories, involving different feedbacks and environmental conditions. We discuss how the inherent complexity of the Amazon adds uncertainty about future dynamics, but also reveals opportunities for action. Keeping the Amazon forest resilient in the Anthropocene will depend on a combination of local efforts to end deforestation and degradation and to expand restoration, with global efforts to stop greenhouse gas emissions.


Assuntos
Florestas , Aquecimento Global , Árvores , Secas/estatística & dados numéricos , Retroalimentação , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Árvores/crescimento & desenvolvimento , Incêndios Florestais/estatística & dados numéricos , Incerteza , Recuperação e Remediação Ambiental/tendências
2.
Proc Natl Acad Sci U S A ; 120(33): e2301255120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549286

RESUMO

Forest-savanna boundaries are ecotones that support complex ecosystem functions and are sensitive to biotic/abiotic perturbations. What drives their distribution today and how it may shift in the future are open questions. Feedbacks among climate, fire, herbivory, and land use are known drivers. Here, we show that alternating seasonal drought and waterlogging stress favors the dominance of savanna-like ecosystems over forests. We track the seasonal water-table depth as an indicator of water stress when too deep and oxygen stress when too shallow and map forest/savanna occurrence within this double-stress space in the neotropics. We find that under a given annual precipitation, savannas are favored in landscape positions experiencing double stress, which is more common as the dry season strengthens (climate driver) but only found in waterlogged lowlands (terrain driver). We further show that hydrological changes at the end of the century may expose some flooded forests to savanna expansion, affecting biodiversity and soil carbon storage. Our results highlight the importance of land hydrology in understanding/predicting forest-savanna transitions in a changing world.


Assuntos
Ecossistema , Pradaria , Secas , Florestas , Clima , Árvores
3.
New Phytol ; 230(6): 2226-2245, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33521942

RESUMO

Trees partition biomass in response to resource limitation and physiological activity. It is presumed that these strategies evolved to optimize some measure of fitness. If the optimization criterion can be specified, then allometry can be modeled from first principles without prescribed parameterization. We present the Tree Hydraulics and Optimal Resource Partitioning (THORP) model, which optimizes allometry by estimating allocation fractions to organs as proportional to their ratio of marginal gain to marginal cost, where gain is net canopy photosynthesis rate, and costs are senescence rates. Root total biomass and profile shape are predicted simultaneously by a unified optimization. Optimal partitioning is solved by a numerically efficient analytical solution. THORP's predictions agree with reported tree biomass partitioning in response to size, water limitations, elevated CO2 and pruning. Roots were sensitive to soil moisture profiles and grew down to the groundwater table when present. Groundwater buffered against water stress regardless of meteorology, stabilizing allometry and root profiles as deep as c. 30 m. Much of plant allometry can be explained by hydraulic considerations. However, nutrient limitations cannot be fully ignored. Rooting mass and profiles were synchronized with hydrological conditions and groundwater even at considerable depths, illustrating that the below ground shapes whole-tree allometry.


Assuntos
Árvores , Xilema , Biomassa , Fotossíntese , Folhas de Planta , Água
4.
Plant Cell Environ ; 43(4): 945-964, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31759337

RESUMO

Algal-fungal symbionts share water, nutrients, and gases via an architecture unique to lichens. Because lichen activity is controlled by moisture dynamics, understanding water transport is prerequisite to understand their fundamental biology. We propose a model of water distributions within foliose lichens governed by laws of fluid motion. Our model differentiates between water stored in symbionts, on extracellular surfaces, and in distinct morphological layers. We parameterize our model with hydraulic properties inverted from laboratory measurements of Flavoparmelia caperata and validate for wetting and drying. We ask: (1) Where is the bottleneck to water transport? (2) How do hydration and dehydration dynamics differ? and (3) What causes these differences? Resistance to vapor flow is concentrated at thallus surfaces and acts as the bottleneck for equilibrium, while internal resistances are small. The model captures hysteresis in hydration and desiccation, which are shown to be controlled by nonlinearities in hydraulic capacitance. Muting existing nonlinearities slowed drying and accelerated wetting, while exaggerating nonlinearities accelerated drying and slowed wetting. The hydraulic nonlinearity of F. caperata is considerable, which may reflect its preference for humid and stable environments. The model establishes the physical foundation for future investigations of transport of water, gas, and sugar between symbionts.


Assuntos
Parmeliaceae/metabolismo , Desidratação , Modelos Biológicos , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...